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THE ALGEBRAIC CHROMATIC SPLITTING CONJECTURE FOR

NOETHERIAN RING SPECTRA

TOBIAS BARTHEL, DREW HEARD, AND GABRIEL VALENZUELA

Abstract. We formulate a version of Hopkins’ chromatic splitting conjecture for an arbitrary
structured ring spectrum R, and prove it whenever π∗R is Noetherian. As an application, these
results provide a new local-to-global principle in the modular representation theory of finite
groups.

1. Introduction

In his seminal talk [Hop87], Hopkins presents the global structure of the stable homotopy
category in parallel to the structure of the derived category DR of a Noetherian commutative
ring R. In both cases, the thick subcategories of compact objects are classified in terms of a
support theory, which in turn is based on a spectrum of certain prime objects. In the algebraic
case, Neeman [Nee92] shows that this spectrum can be taken to be the Zariski spectrum Spec(R)
of prime ideals in R, while the corresponding result in homotopy theory has been worked out
previously by Devinatz, Hopkins, and Smith [DHS88, HS98].

Based on earlier work of Hovey, Palmieri, and Strickland [HPS97], Benson, Iyengar, and
Krause [BIK08, BIK11a] subsequently developed a framework for studying both the global and
local structure of general triangulated categories in terms of local cohomology and local ho-
mology functors. This provides a conceptual approach to formulating and proving many of the
fundamental results in stable homotopy theory in various other contexts, as for example modular
representation theory.

An important open question about the stable homotopy category is how its indecomposable
pieces assemble locally; this is the content of Hopkins’ chromatic splitting conjecture. If cor-
rect, it would provide a fundamental local-to-global principle in stable homotopy theory. Given
the general framework mentioned above, we may thus formulate the analogous problem in an
arbitrary triangulated category equipped with a support theory.

The goal of this paper is to study this question for the category ModR of module spectra over
a structured ring spectrum R. To this end, we need to work in the context of the companion
paper [BHV18], which in turn is based on [BIK08] and [BHV15]. If V ⊆ Spech(π∗R) is a
specialization closed subset, there is a quadruple of functors (ΓV , LV ,∆V ,ΛV) on ModR (see
[BHV18, Thm. 3.9]) which captures the part of ModR supported on V .

In analogy to the arithmetic pullback square displayed on the left below, we construct a
homotopy pullback square which describes how a compact p-local R-module spectrum M is
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assembled from its pieces ΛpM and LV(p)M :

(1) Z //

��

∏
p Zp

��

M

��

// ΛpM

��

Q // Q⊗
∏
p Zp LV(p)M

ιp(M)
// LV(p)ΛpM.

Here, the gluing is controlled by the map LV(p)M → LV(p)ΛpM . The algebraic chromatic
splitting hypothesis for R and p states, informally speaking, that this assembly process is as
simple as possible without being trivial.

Throughout this document we use the term Noetherian ring spectrum to refer to an E∞-ring
spectrum R with π∗R graded Noetherian. The main theorem of this paper verifies that the
algebraic chromatic splitting hypothesis holds for every structured Noetherian ring spectrum
and every module M of type p′, a condition introduced in Definition 2.11. As such, it is the first
instance of a systematic result on chromatic splitting.

Theorem (Theorem 3.11). Suppose that R is a Noetherian E∞-ring spectrum, then the map
ιp(M) in (1) is split for any adjacent pair of primes (p′ ⊂ p) and any p-local R-module M of
type p′.

The proof relies on a generalization of a result due to Margolis about the nonexistence of certain
phantom maps in the category of spectra. This requires a notion of Brown–Comenetz duality for
ModR, which is of independent interest. In particular, we explain how Brown–Comenetz duality
interacts with local duality in the Gorenstein case, thereby obtaining an analogue of a theorem
of Hovey and Strickland for the K(n)-local stable homotopy category.

A guiding example is the E∞-ring spectrum R = C∗(BG, k) of cochains on the classifying
space of a finite p-group G with coefficients in a field k of characteristic p. The associated
module category ModC∗(BG,k) is equivalent to Krause’s category StablekG, which is built from
the stable module category of kG and its derived category via a recollement. The structure of
ModC∗(BG,k) therefore controls a large part of the modular representation theory of G.

The main theorem of Benson, Iyengar, and Krause [BIK11b] establishes a decomposition of
StablekG in terms of certain minimal localizing subcategories Γp StablekG parametrized by prime
ideals p ∈ Spech(H∗(G, k)). Specialized to this category, the chromatic splitting hypothesis thus
describes how finitely generated G-representations M are built out of their local cohomology
complexes ΓpM . In other words, our results can be interpreted as a local-to-global principle for
kG-modules in the stable module category, see Example 3.17.

From a more abstract point of view, we find the structural similarities between the stable
homotopy category Sp and algebraic categories like StablekG rather remarkable. We hope to
return to this point in a future paper; for now, in order to help the reader to translate between
the different contexts, we end this introduction with a short dictionary.

Chromatic homotopy theory Modular representation theory

In = (p, v1, . . . , vn−1), n ≥ 0 p ∈ Spech(H∗(G, k))

Ln LZ(p)

Mn, LK(n) Γp,Λp

Gross–Hopkins duality Benson–Greenlees duality.

Conventions. Throughout this paper, we will work in the setting of ∞-categories as developed
in [Lur09, Lur17], and will use the local duality framework described in [BHV15, BHV18]. In
particular, all constructions will implicitly be assumed to be derived. An ∞-category C = (C,⊗)
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is called a stable category if it is a symmetric monoidal stable ∞-category compactly generated
by dualizable objects and whose monoidal product ⊗ commutes with colimits separately in each
variable. Writing A for a unit of the stable category (C,⊗), we define the (Spanier–Whitehead)
dual of an object X ∈ C by X∨ = HomC(X,A), where HomC denotes the internal mapping object
of C; note that, under our assumptions on C, HomC exists for formal reasons.

A full stable subcategory D ⊆ C of a stable category C is thick if it is closed under suspensions,
finite colimits, and retracts. For example, the full subcategory Cω ⊂ C of compact objects in C is
thick. A thick subcategory is said to be localizing if it is also closed under all colimits. We denote
the thick subcategory generated by a subcategory S ⊆ C by Thick(S); the smallest localizing
subcategory Loc(S) of C containing S is defined analogously. Finally, a localizing subcategory
M ⊆ C which does not contain any proper localizing subcategories is called minimal.

All discrete rings R in this paper are assumed to be commutative and graded, and all ring-
theoretic notions are implicitly graded. In particular, an R-module M refers to a graded R-
module and we write ModR for the abelian category of discrete graded R-modules. Prime ideals
in R will be denoted by fraktur letters p, q, r and are always assumed to be finitely generated and
homogeneous, so that Spech(R) refers to the Zariski spectrum of homogeneous finitely generated
prime ideals in R.

Acknowledgements. We would like to thank John Greenlees, Henning Krause, and Hal Sad-
ofsky for helpful discussions, as well as the referee for many useful suggestions and corrections.
Moreover, we are grateful to the Max Planck Institute for Mathematics for its hospitality, funding
a week-long visit of the third-named author in June 2016. The first-named author was partially
supported by the DNRF92.

2. Chromatic assembly

2.1. Recollections on local cohomology and local homology. Let R be an E∞-ring spec-
trum. A subset V ⊆ Spech(π∗R) of prime ideals of π∗R is called specialization closed if p ∈ V and
p ⊆ q imply q ∈ V . In [BIK08], Benson, Iyengar, and Krause construct a smashing colocalization
functor ΓV corresponding to the subcategory of ModR on objects with support in V . We give a
brief summary of the basic theory of these functors, following the approach taken in [BHV18].

For a given finitely generated prime ideal p ∈ V , we can form the corresponding Koszul ob-
ject R//p ∈ ModωR by iteratively coning off the elements in some generating set of p. While
this construction depends on the chosen generators, the thick subcategory Thick(R//p) gener-

ated by R//p does not, justifying the notation. Let ModV−tors
R = Loc(R//p | p ∈ V) be the

localizing subcategory of ModR generated by the Koszul objects R//p with p ∈ V . The pair

(ModR,ModV−tors
R ) forms a local duality context in the sense of [BHV15], and thus, by [BHV15,

Thm. 2.21 and Cor. 2.26] (which in turn relies on [HPS97, Thm. 3.3.5]) gives rise to four functors
(ΓV , LV ,∆V ,ΛV), satisfying:

Theorem 2.1. Suppose R is an E∞-ring spectrum and V ⊆ Spech(π∗R) is a specialization closed
subset of prime ideals. There exists a quadruple (ΓV , LV ,∆V ,ΛV) of endofunctors on ModR with
the following properties:

(1) The functor ΓV is the colocalization with respect to the localizing subcategory Loc(R//p |
p ∈ V), and both LV and ΛV are localization functors, the latter with essential image
the colocalizing subcategory Coloc(R//p ⊗M | p ∈ V ,M ∈ ModR). Moreover, there are
natural cofiber sequences

ΓVM // M // LVM and ∆VM // M // ΛVM

for all M ∈ ModR.
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(2) Both ΓV and LV are smashing, i.e., ΓV(X) ≃ X⊗ΓV(R) for all X and similarly for LV .

Moreover, LV preserves compact objects and we denote its essential image by ModV −loc
R .

(3) The functors ΓV and ΛV induce mutually inverse equivalences between their images

ModV−tors
R = Im(ΓV)

ΛV // Im(ΛV) = ModV−comp
R .

ΓV

oo

Moreover, there are natural equivalences of functors

ΛVΓV
∼ // ΛV ΓV

∼ // ΓVΛV .

(4) The functors (ΓV ,ΛV) form an adjoint pair, so that we have a natural equivalence

HomR(ΓVX,Y ) ≃ HomR(X,ΛVY )

for all X,Y ∈ ModR, where HomR(X,Y ) denotes the R-module function spectrum be-
tween R-modules M and N . Similarly, LV is left adjoint to ∆V .

(5) There is a homotopy pullback square of functors

Id //

��

ΛV

��

LV
// LVΛV ,

which is usually referred to as the (chromatic) fracture square.

Associated to a given prime ideal p ∈ Spech(π∗R), there are two distinguished specialization
closed subsets of prime ideals, namely

Z(p) = {q ∈ Spech(π∗R) | q * p} and V(p) = {q ∈ Spech(π∗R) | p ⊆ q}.

The localization functor LZ(p) = (−)p corresponds to algebraic p-localization, see [HPS97,
Prop. 6.0.7] and [BIK08, Thm. 4.7], i.e., it is characterized by the property that (π∗M)p ∼=
π∗(LZ(p)M). We also have a formula for the localization functors associated to V(p). To de-
scribe this, we remind the reader that for a ∈ π∗R homogeneous of degree −d we define the
Koszul object R//ak by the cofiber sequence

(2) R
ak
−→ ΣkdR→ R//ak.

It is evident from this description that R//ak is self-dual up to a shift.
More generally, for an ideal p = (p1, . . . , pn), we define1 M//p(s) =M ⊗R//ps1 ⊗ · · · ⊗R//psn.

Lemma 2.2. For any prime ideal p = (p1, . . . , pn) ∈ Spech(π∗R) and all M ∈ ModR, there are
natural equivalences

ΓV(p)M ≃ colims(Σ
−nR//p(s) ⊗M), and ΛV(p)M ≃ lims(Σ

sdR//p(s) ⊗M)

where −d = |p1|+ . . .+ |pn|.

The effect of LV on homotopy groups for arbitrary specialization closed subsets V ⊆ Spech(π∗R)
is more complicated, but we expect these can be understood via a local cohomology spectral se-
quence as described in [BHV18, Rem. 3.15].

Following [HPS97] and [BIK08], we can then build functors that isolate the part of ModR
supported at p.

1We warn the reader that R//p(s) is not the derived quotient with respect to the ideal ps.
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Definition 2.3. For a prime ideal p ∈ Spech(π∗R), define endofunctors on ModR by

Γp = ΓV(p)LZ(p) and Λp = ΛV(p)∆Z(p).

We denote the essential image Γp ModR = Modp−tors
Rp

and ΛpModR = Modp−comp
Rp

. Moreover,

the support of any X ∈ ModR is defined as suppRX = {p ∈ Spech(π∗R) | ΓpX 6= 0}.

Note that, as the composite of smashing functors, Γp is smashing, but this is not the case for
Λp. As an easy consequence of Theorem 2.1(4), Γp is left adjoint to Λp for any p ∈ Spech(π∗R);
for more details about these functors, we refer to [BIK08] and [BHV18]. From now on, we will
implicitly assume that the letters p, q, r and so on refer to prime ideals in the homotopy groups
of the ring spectrum under consideration.

Recall that the local-to-global principle for ModR states that the inclusion functor

Loc(ΓpR | p ∈ Spech(π∗R)) ⊆ Loc(R),

is an equivalence, see [BIK11a, Sec. 3]. In particular, it implies that the natural functor

(3)
∏

p
Γp : ModR //

∏
p
ModR

is conservative, where the product is indexed by all prime ideals p. It holds in particular for any
E∞-ring spectrum with π∗R (graded) Noetherian. To see this, it suffices to show that it is an
equivalence in the homotopy category. Since ModR is compactly generated by its tensor unit R,
this follows from [BIK11a, Thm. 7.2].

2.2. Adjacent prime ideals. The goal of this subsection is to establish a relation between the
localization and colocalization functors of the previous subsection which will be needed in the

proof of the main theorem. For any subset V ⊆ Spech(π∗R), let V∁ = Spech(π∗R) \ V be the

complement. Note that V is specialization closed if and only if V∁ is generalization closed, i.e.,

if p ∈ V∁ and q ⊆ p then q ∈ V∁. For the following, see [BIK11a, Lem. 2.4].

Lemma 2.4. For any prime ideal p and for any specialization closed subset V ⊆ Spech(π∗R),
the counit map of ΓV induces natural equivalences

ΓpΓV ≃

{
Γp if p ∈ V

0 otherwise.

The next result also appears in [BIK08, Prop. 6.1], but we give an alternative argument.

Lemma 2.5. If V ,W ⊆ Spech(π∗R) are specialization closed subsets, then the following hold:

(1) ΓVΓW ≃ ΓV ∩W ≃ ΓWΓV .
(2) LVLW ≃ LV ∪W ≃ LWLV .

Proof. We will only prove (1), and leave the similar proof of (2) for the reader. Since the claim is
symmetric in V and W, it suffices to verify that ΓVΓW ≃ ΓV ∩W . As V ∩W ⊆ W , there exists a
natural map ΓV ∩W → ΓW , which induces a natural transformation ΓV ∩W ≃ ΓVΓV ∩W → ΓVΓW

by [BIK08, Lem. 3.4]. By Lemma 2.4, we have equivalences

ΓpΓVΓW ≃

{
ΓpΓW if p ∈ V

0 otherwise

≃

{
Γp if p ∈ V ∩W

0 otherwise,

for any p ∈ Spech(π∗R). The same calculation works for ΓV ∩W , so the result follows from the
local-to-global principle (3). �
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Proposition 2.6. Let p 6= p′ be prime ideals in Spech(π∗R), then there is a natural equivalence
of functors

LV(p)LZ(p)ΓV(p′)
≃ // Γp′LZ(p)

if and only if there is no prime ideal q such that p′ ( q and q ( p. Furthermore, there is an
equivalence

Γp′LZ(p) ≃

{
Γp′ if p′ ⊆ p

0, otherwise.

Proof. For any p, p′ ∈ Spech(π∗R), the unit maps provide natural transformations

LV(p)LZ(p)ΓV(p′)
η

// LZ(p′)LV(p)LZ(p)ΓV(p′) LZ(p′)LZ(p)ΓV(p′) ≃ Γp′LZ(p).
η̃

oo

We first claim that η̃ is an equivalence whenever p 6= p′. It is enough to show that the fiber of η̃
is zero. But this fiber is equivalent to LZ(p′)ΓV(p)LZ(p)ΓV(p′) ≃ Γp′Γp. By [BHV18, Lem. 4.26]
this is zero unless p = p′.

Now consider the fiber of η, which is equivalent to ΓZ(p′)LV(p)LZ(p)ΓV(p′). To show this is
zero it is enough to show that the support is empty when evaluated on R [BIK08, Thm. 2]. Using
Lemma 2.5 the fiber (evaluated at R) is equivalent to ΓZ(p′)∩V(p′)LZ(p)∪V(p)R. Using [BIK08,

Thm. 5.6] this has support Z(p′) ∩ V(p′) ∩ (Z(p) ∪ V(p))∁. Now (V(p) ∪ Z(p))∁ = {q | q ( p}
and Z(p′) ∩ V(p′) = {q | p′ ( q}, and so the support is empty precisely when there is no
q′ ∈ Spech(π∗R) such that p′ ( q and q ( p, as required.

The second statement follows from the observation that Γp′LZ(p) ≃ Γp′ if and only p′ ∈ Z(p)∁,
which in turn is equivalent to p′ ⊆ p; if this is not the case, then Γp′LZ(p) ≃ 0. �

This proposition leads naturally to the following definition.

Definition 2.7. A pair (p′ ⊂ p) of primes in Spech(π∗R) is called adjacent if p′ 6= p and there
exists no prime ideal q such that p′ ( q ( p.

The following is an immediate consequence of the definition and Proposition 2.6.

Corollary 2.8. For any adjacent pair (p′ ⊂ p) of primes, there is an equivalence of functors

LV(p)LZ(p)ΓV(p′)
≃ // Γp′ .

2.3. The algebraic splitting hypothesis. In this subsection, we formulate an analogue of
Hopkins’ chromatic splitting conjecture in chromatic homotopy theory, as described in [Hov95],
for arbitrary structured ring spectra R. We will start by constructing an appropriate version
of the chromatic fracture square. To this end, first observe that ΛpLZ(p) = ΛV(p)∆Z(p)LZ(p) ≃
ΛV(p)LZ(p), so

(4) ΛpM ≃ ΛV(p)M

for all M ∈ ModRp
.

Lemma 2.9. For any M in ModRp
there is a homotopy pullback square

M

��

// ΛpM

��

LV(p)M
ιp(M)

// LV(p)ΛpM,

whose horizontal fibers are equivalent to ∆pM = ΛV(p)∆Z(p)M .



THE ALGEBRAIC CHROMATIC SPLITTING CONJECTURE FOR NOETHERIAN RING SPECTRA 7

Proof. This follows from the chromatic pullback square of Theorem 2.1(5) for the local duality
context (ModR,V(p)) combined with (4). �

The fracture square can be lifted to a categorical decomposition of ModRp
. This makes precise

the sense in which the natural transformation LV(p) → LV(p)Λp controls the categorical gluing
process.

Proposition 2.10. There is a pullback square of stable ∞-categories

ModRp

//

��

ΛpModRp

LV(p)

��(
Mod

V(p)−loc
Rp

)∆1

π1

// Mod
V(p)−loc
Rp

,

in which π1 denotes the evaluation at 1 ∈ [0, 1] = ∆1. The left vertical functor sends a module
M ∈ ModRp

to the bottom map LV(p)M → LV(p)ΛpM in the fracture square of Lemma 2.9.

Proof. The pullback square of categories is a special case of [BHV15, Cor. 2.28] applied to the
local duality context (ModR,V(p)) and restricted to ModRp

. To identify the right upper corner,
we note that (4) gives a canonical equivalence

Mod
V(p)−comp
Rp

∼ // ΛpModRp

of symmetric monoidal stable ∞-categories. �

Definition 2.11. A compact R-module M is said to be of type p if M ∈ Thick(R//p). Equiva-
lently, a compact module M is of type p if and only if its support, i.e. the set {p ∈ Spech(π∗R) |
ΓpM 6= 0}, is contained in V(p).

The next lemma is an analogue of Ravenel’s result [Rav84, Thm. 2.11] saying that (among
other things), for a finite spectrum X ∈ Sp, K(n)∗(X) = 0 implies K(m)∗(X) = 0 for all
0 ≤ m ≤ n. However, since the topology of Spech(π∗R) is more complicated, this lemma does
not provide an alternative characterization of type.

Lemma 2.12. A compact module M ∈ ModωR satisfies LZ(q)M = 0 if and only if ΓqM ≃ 0. In
particular, both conditions holds if M is of type p and q /∈ V(p).

Proof. By [HPS97, Thm. 6.1.8] there is an equality of Bousfield classes 〈ΓqR〉 = 〈Rq//q〉. Com-
bining this with [HPS97, Prop. 6.1.7(b)] we then have, for all M ∈ ModωR,

ΓqM ≃ 0 ⇐⇒ Rq//q⊗M ≃ 0 ⇐⇒ LZ(q)M ≃ 0.

Finally, if M is of type p, then ΓqM ≃ 0 for all q /∈ V(p). �

With the notation of Definition 2.7 at hand, we may now state the following

Algebraic chromatic splitting hypothesis 2.13. Suppose R is an E∞-ring spectrum. If
(p′ ⊂ p) is an adjacent pair of primes in Spech(π∗R), then ιp(M) is split for any compact
M ∈ ModRp

of type p′.

Remark 2.14. The algebraic chromatic splitting hypothesis given here is inspired by and analo-
gous (albeit not equivalent) to Hopkins’ chromatic splitting hypothesis in chromatic homotopy
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theory, see [Hov95]. In its simplest form, the chromatic splitting conjecture asks whether the
bottom horizontal map in the chromatic fracture square

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X

is split, where X is a finite spectrum of type n − 1, and Ln and LK(n) denote Bousfield local-
ization at Morava E-theory En and Morava K-theory K(n), respectively. Due to computational
verification, it is known to be true for n = 0, 1, 2, but completely open otherwise. Moreover,
there are several refinements of this conjecture, the strongest form of which has been recently
disproven by Beaudry [Bea17].

However, since the corresponding localization functors are constructed differently, the alge-
braic chromatic splitting hypothesis for R = S0 or R = LnS

0 is not equivalent to the chromatic
splitting conjecture, but should instead be considered as an algebraic analogue. This analogy is
clearest under the additional assumption that ModR is canonically stratified by π∗R in the sense
of Benson–Iyengar–Krause [BIK11a].

Remark 2.15. There is an alternative construction of the local homology functor which is closer

to the situation in chromatic homotopy theory, namely Λ̃p = ΛV(p)LZ(p). As we have seen in (4),

Λp and Λ̃p agree on p-local objects, but they differ in general. As will be clear from the proof

of Theorem 3.11 below, the analogue of the algebraic chromatic splitting hypothesis 2.13 for Λ̃p

holds for ModR, i.e., without imposing any locality conditions. In contrast, Λp is right adjoint

to Γp, while this is only true p-locally for Λ̃p.

3. Chromatic splitting

Throughout this subsection, assume that R is a Noetherian E∞-ring spectrum and recall that
all prime ideals p ∈ Spech(π∗R) are finitely generated. In fact, it suffices to assume that R has
less structure, but we will not need this extra generality here.

3.1. Phantom maps and Brown–Comenetz duality. In this subsection, we generalize Brown–
Comenetz duality to ModR and its local analogues, and prove a version of Margolis’ nonexistence
result for phantommaps with target IX . Furthermore, we describe how Brown–Comenetz duality
is related to local duality and (local) Spanier–Whitehead duality.

Definition 3.1. A map f : X → Y in ModR is called phantom if for all C ∈ ModωR and maps
g : C → X the composite g ◦ f is null.

For any (discrete) graded commutative ring A, denote the full subcategory of graded injective
A-modules by InjA ⊆ ModA. For any X ∈ ModR and any graded injective module I ∈ Injπ∗R,
the exact functor

ModopR
π∗(X⊗−)

// Modopπ∗R

Hom(−,I)
// Modπ∗R

is representable by an object IX . Note that IR ≃ I is the lift of I as defined in [BHV18, Sec. 4.1].
The next lemma is the analogue of a result due to Margolis [Mar83, Prop. 5.1.2] for the stable
homotopy category; his proof generalizes easily.

Lemma 3.2. For any X ∈ ModR and any lift I of some injective π∗R-module I, there are no
nontrivial phantom maps with target IX.
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Proof. The argument is a straightforward adaptation of Margolis’ proof, which we give here for
the convenience of the reader. Suppose f : Y → IX is a phantom map, and write Y as a filtered
colimit colimJ Yα of compact objects Yα. Consider the following commutative diagram

π∗ HomR(Y, IX)
∼ //

��

Hom−∗
π∗R

(π∗(X ⊗ Y ), I)

∼

��

limJ π∗ HomR(Yα, IX)
∼

// limJ Hom
−∗
π∗R

(π∗(X ⊗ Yα), I).

The horizontal maps are isomorphisms by the universal property of IX , while the right vertical
map is so because π∗ commutes with filtered colimits. Therefore, the left vertical map is an
isomorphism as well, and the claim follows. �

Let Ip be the injective hull of the residue field π∗(Rp)/p considered as an Rp-module. We
write Ip ∈ ModRp

for the corresponding Brown–Comenetz dual of Rp and φM : M → I2pM for the
canonical map. The next result gives a sufficient condition for when this map is an equivalence.

Proposition 3.3. The map φM is an equivalence if π∗(M) is finitely generated as a module over
π∗Rp/p. In particular, this is the case if M ∈ Thick(Rp//p). More generally, φM factors through

an equivalence M ≃ ΓpI2pM for all M ∈ Modp−tors
Rp

such that π∗(M ⊗Rp//p) is finitely generated

over π∗Rp/p.

Proof. Suppose M ∈ ModRp
satisfies the condition of the proposition. Matlis duality and the

definition of Ip then provide isomorphisms

π∗I
2
pM

∼= Hom−∗
π∗Rp

(π∗(IM), Ip)

∼= Hom−∗
π∗Rp

(Hom−∗
π∗Rp

(π∗(M), Ip), Ip)

∼= π∗M.

It is easy to verify that the composite isomorphism is the one induced by φM . Furthermore, a
standard inductive argument on the number of generators of p implies that π∗Rp//p is finitely
generated over π∗(Rp)/p, hence φM is an equivalence for all M ∈ Thick(Rp//p).

Now assume M ∈ Modp−tors
Rp

with the property that π∗(M ⊗Rp//p) is finitely generated over

π∗Rp/p. Since M ≃ ΓpM , φM factors through a map

φ′M : M // ΓpI2pM,

so it suffices to prove that φ′M ⊗Rp//p ≃ φM ⊗ Rp//p is an equivalence. Since Rp//p is compact
and thus dualizable in ModRp

, the same argument as for [HS99, Thm. 10.2(d)] shows that
φM ⊗Rp//p ≃ φM⊗Rp//p. Therefore, we may assume that π∗M is finitely generated over π∗Rp/p,
reducing the claim to the previous case. �

Corollary 3.4. For any prime p, there are no nontrivial phantom maps with target Rp//p.

Proof. By Proposition 3.3, there is an equivalence Rp//p ≃ I2pRp//p, so the claim follows from
Lemma 3.2. �

We finally explain how Brown–Comenetz duality interacts with local duality, at least in the
case that Rp is absolute Gorenstein of shift ν. Recall that this means that there is an (abstract)
equivalence ΓpR ≃ ΣνIp. For more details on Gorenstein ring spectra, see [Gre16] or [BHV18].
For the following, we let M∨ = HomRp

(M,Rp) denote the dual of M in ModRp
.
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Proposition 3.5. Suppose Rp is absolute Gorenstein of shift ν. For any M ∈ ModωRp
, there is

an equivalence ΛpM ≃ ΣνIp(ΓpM
∨). In particular, all phantom maps with target ΛpM must be

trivial.

Proof. The Gorenstein condition combined with Theorem 2.1 gives isomorphisms

π∗ HomR(X, IpΓpM
∨) ∼= Hom−∗

π∗R
(π∗(X ⊗ ΓpM

∨), Ip)

∼= π∗ HomR(X ⊗ ΓpM
∨, Ip)

∼= π∗ HomR(ΓpX ⊗M∨, Ip)
∼= π∗ HomR(X,Λp(M ⊗ Ip))

∼= π∗ HomR(X,Λp(M ⊗ Σ−νΓpR))

∼= π∗ HomR(X,ΛpΣ
−νM)

for any X ∈ ModR. Consequently, we get an equivalence ΛpM ≃ ΣνIp(ΓpM
∨). The second part

of the claim then follows from Lemma 3.2. �

Corollary 3.6. If Rp is absolute Gorenstein of some shift ν and M ∈ ModωR, then all phantom

maps with target Λ̃pM are trivial.

Proof. As noted before, Λ̃pM ≃ Λ̃pMp ≃ ΛpMp. Since Mp ∈ ModωRp
is compact, Proposition 3.5

applies. �

Remark 3.7. We could also make the stronger global assumption that R rather than Rp is Goren-
stein. In this case, there is an additional shift by d appearing in the formula of Proposition 3.5,
the dimension of the prime ideal p in R.

Remark 3.8. Note that, in general, module categories over Noetherian ring spectra contain many
non-trivial phantom maps, due to the failure of the generating hypothesis in these situations. For
example, the analogue of the generating hypothesis is known to fail for the derived category of a
ring [HLP07] or the stable module category of a finite group [CCM09] except in very simple cases.
Since we require a splitting in the category of R-module spectra, the results of this subsection are
crucial for the proof of the algebraic chromatic splitting hypothesis for Noetherian ring spectra.

3.2. Proof of the main theorem. Fix a prime ideal p ∈ Spech(π∗R). We start with two
auxiliary lemmas.

Lemma 3.9. For any prime p and M ∈ ModωRp
, there is a natural equivalence π∗ΛpM ∼=

(π∗M)∧p , where (−)∧p denotes (underived) p-completion.

Proof. By [BHV18, Prop. 3.19], there exists a strongly convergent local homology spectral se-
quence of signature

Hp
∗ (π∗M) =⇒ π∗ΛpM.

Recall that, on the E2-page, the algebraic local homologyHp
∗ computes the derived p-completion,

see [GM92, Thm. 2.5] or [BHV15, Prop. 3.14]. Since M is assumed to be compact, π∗M is a
finitely generated π∗Rp-module, so this spectral sequence collapses to the desired isomorphism
by the Artin–Rees lemma. �

Lemma 3.10. The natural map π∗∆pM → π∗LV(p)M is zero for any compact M ∈ ModωRp
.

Proof. By Krull’s intersection theorem [AM69, Cor. 10.19] and Lemma 3.9, the completion map
π∗M → π∗ΛpM is injective. Therefore, it follows from the long exact sequence associated to the
fiber sequence ∆pM →M → ΛpM that the natural map π∗∆pM → π∗M is zero. The pullback
square of Lemma 2.9 then yields the claim. �
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We are now ready to prove the main result of this section.

Theorem 3.11. The algebraic chromatic splitting hypothesis holds for any Noetherian E∞-ring
spectrum R, i.e., for any adjacent pair of primes (p′ ⊂ p), the natural map

ιM : LV(p)M // LV(p)ΛpM

is split for all compact M ∈ ModωRp
of type p′.

Proof. By a thick subcategory argument it suffices to consider M = Rp//p
′. We first claim that,

for any adjacent pair (p′ ⊂ p), there are equivalences

(5) LV(p)Rp//p
′ ≃ Λp′Rp′//p′ ≃ Rp′//p′,

where the last equivalence follows from the fracture square for Rp′//p′.
To this end, note that Rp//p

′ ≃ LZ(p)R//p
′ ≃ LZ(p)ΓV(p′)R//p

′, where the last equivalence is a
consequence of [BIK08, Lem. 5.11(2)]. Applying Corollary 2.8 to R//p′ then yields equivalences

LV(p)Rp//p
′ ≃ LV(p)LZ(p)ΓV(p′)R//p

′

≃ Γp′R//p′

≃ Rp′//p′.

We now claim that the map ∆pRp//p
′ → LV(p)Rp//p

′ is phantom. Indeed, let C → ∆pRp//p
′

be a map from a compact module C. The composite C → ∆pRp//p
′ → LV(p)Rp//p

′ is adjoint
to a homotopy class R → ∆pC

∨
p //p

′ → LV(p)C
∨
p //p

′, which must be trivial by Lemma 3.10. By
Corollary 3.4 there are no non-trivial phantom maps with target Rp′//p′, hence ∆pRp//p

′ →
LV(p)Rp//p

′ ≃ Rp′//p′ is zero, so ιRp//p′ is split. �

Remark 3.12. This argument has been inspired by an approach to the original chromatic splitting
conjecture appearing in unpublished work by Sadofsky.

In the following we will consider natural maps

ιn : Rp′//(p′)(n) ⊗M // Rp′//(p′)(n) ⊗ ΛpM

for M ∈ ModωRp
, and (p′ ⊂ p) a pair of adjacent primes. These maps are split by Theorem 3.11,

and we say that the splitting can be chosen compatibly if it is compatible with the maps in the
associated tower obtained by varying n.

The next two results give integral versions of Theorem 3.11.

Corollary 3.13. For any pair (p′ ⊂ p) of adjacent primes and M ∈ ModωRp
, if the splittings

appearing in the previous theorem can be chosen compatibly, then the natural map

Λ̃p′M // Λ̃p′ΛpM

is split.

Proof. Using the fact that LV(p) is smashing, as well as an argument similar to that given in

proving (5), one has that Rp′//(p′)(n) ⊗M ≃ LV(p)(M ⊗ Rp//(p
′)(n)). This implies that, for M

as in the corollary and any n ≥ 0, there is a natural map

Rp′//(p′)(n) ⊗M ≃ LV(p)(M ⊗Rp//(p
′)(n))

ιn // LV(p)Λp(M ⊗Rp//(p
′)(n)) ≃ Rp′//(p′)(n) ⊗ ΛpM,

where we have used the fact that Rp//(p
′)(n) is compact in ModRp

, so that tensoring with

Rp//(p
′)(n) commutes with Λp.

Local duality (Theorem 2.1) and Lemma 2.2 then give equivalences

(6) ψN : Λ̃qN ≃ limnΣ
ndRq//q

(n) ⊗N
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for any prime ideal q and N ∈ ModR. This leads to the following commutative diagram:

Λ̃p′M
κ //

ψM ∼

��

Λ̃p′ΛpM

∼ ψΛpM

��

limnΣ
ndRp′//(p′)(n) ⊗M

ι
// limnΣ

ndRp′//(p′)(n) ⊗ ΛpM.

The map ι is split because it is a limit of split maps by Theorem 3.11 which are assumed to be
compatible with the inverse system. �

We now exhibit a condition on R such that the map of Corollary 3.13 is split, which covers
many examples of interest. We note that the following corollary simply proves the existence of
some splitting; we do not claim that it is the limit of the individual splittings.

Corollary 3.14. Assume that the ring spectrum Rq is absolute Gorenstein for any q ∈ Spech(π∗R).
For any pair (p′ ⊂ p) of adjacent primes and M ∈ ModωRp

, the natural map

Λ̃p′M // Λ̃p′ΛpM

is split.

Proof. First, note that it is enough to prove the claim for M = R. Applying Λ̃p′ to the
fiber sequence ∆pRp → Rp → ΛpRp, it then suffices by Corollary 3.6 to show that the map

φ : Λ̃p′∆pRp → Λ̃p′Rp ≃ Λ̃p′R is phantom. The same argument as the one given at the end of
the proof of Theorem 3.11 reduces this to the claim that

φ∗ : π∗Λ̃p′∆pC // π∗Λ̃p′C

is zero for all C ∈ ModωRp
. We will show this for C = Rp, the general case being an easy

consequence. To this end, we use the limit description of (6).
As seen in the proof of Proposition 3.3, the graded module π∗(Rp′//p′) is finitely generated

over (π∗Rp′)/p′ ∼= (π∗R)p′/p′, so we see inductively that π∗(Rp′//p′(n)) is a degreewise finite-

dimensional vector space over (π∗Rp′)/p′ for all n ≥ 1. Therefore, the tower (π∗(Σ
ndRp′//p′(n)))n

satisfies the Mittag-Leffler condition, hence lim1
n π∗(Σ

ndRp′//p′(n)) = 0. The associated Milnor
sequences thus give a commutative diagram

π∗Λ̃p′∆pRp
∼= π∗ limn(Σ

ndRp′//p′(n) ⊗∆pRp) //

φ∗

��

limn π∗(Σ
ndRp′//p′(n) ⊗∆pRp) //

��

0

π∗Λ̃p′Rp
∼= π∗ limnΣ

ndRp′//p′(n)
∼

// limn π∗(Σ
ndRp′//p′(n)) // 0.

The right vertical arrow is zero because each of the individual maps

π∗(Rp′//p′(n) ⊗∆pRp) // π∗(Rp′//p′(n))

is zero as was shown in the proof of Theorem 3.11. This implies φ∗ = 0. �

Observe that variants of Theorem 3.11 and Corollaries 3.13 and 3.14 hold without the p-

locality assumption on M if we use Λ̃ in place of Λ, see Remark 2.15. We decided to give the
version stated above since it is consistent with the work of Benson, Iyengar, and Krause.
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3.3. Applications and examples. The algebraic chromatic splitting hypothesis is particularly
relevant in categories ModR which are stratified by π∗R in the sense of Benson, Iyengar, and
Krause. We recall from [BIK11a] that this means that the following two conditions hold:

(1) The category ModR satisfies the local to global principle.

(2) The localizing subcategories Γp ModR = Modp−tors
Rp

are minimal for all p ∈ Spech(π∗R).

In this case, the localizing subcategories of ModR are in bijection with subsets of Spech(π∗R) and
are detected by the functors Γp. Informally speaking, the splitting of Theorem 3.11 thus describes
how ModR can be assembled from its indecomposable pieces Γp ModR. In this subsection, we
review three known classes of stratified categories ModR with R Noetherian and give one explicit
example.

Example 3.15. The easiest case is when R is a discrete Noetherian commutative ring. It is
known by work of Neeman [Nee92] that the localizing subcategories of the derived category ModR
of R-modules are classified by subsets of Spech(R). From this, it immediately follows that ModR
is stratified by R, so the algebraic chromatic splitting hypothesis holds. This complements
Neeman’s work on the nilpotence theorem and the telescope conjecture by resolving the last
remaining algebraic analogue of a prominent chromatic conjecture for ModR.

The next example contains the previous one as a special case.

Example 3.16. Suppose R is an evenly concentrated Noetherian E∞-ring spectrum with π∗R
regular. Dell’Ambrogio and Stanley show in [DS16] that the localizing subcategories of ModR
are in bijection with subsets of Spech(π∗R), from which the stratification result can be deduced.

As a concrete example, we can take R = En to be Morava E-theory, a ring spectrum with
coefficients WFpnJu1, . . . , un−1K[u

±1], where WFpn denotes the ring of Witt vectors on Fpn , the
ui are in degree 0, and u is in degree −2. By a theorem of Goerss and Hopkins [GH04], En
admits the structure of an E∞-ring spectrum and thus satisfies the above conditions.

Our results in this case should be contrasted with Devinatz’s counterexample to the BP -
analogue of the chromatic splitting conjecture, see [Dev98]. Recall that the Brown–Peterson
spectrum BP has coherent (but not Noetherian) graded commutative homotopy ring π∗BP ∼=
Z(p)[v1, v2, . . .], so that In = (p, v1, . . . , vn−1) is a regular prime ideal in BP∗. By [BHV15,
Thm. 7.23] and [BS16, Prop. 3.7] combined with Lemma 2.2, the chromatic localization functors
Ln−1 and LK(n) restricted to ModBP are equivalent to the algebraic localization functors LV(In)

and ΛV(In)LV(In), respectively (see also [BHV18, Prop. 3.12]). We thus obtain a commutative
square

Ln−1BPp //

∼

��

Ln−1LK(n)BPp

∼

��

LV(In)BPp ι
// LV(In)ΛV(In)LV(In)BPp

in which the top map is the one considered by Devinatz, whereas the bottom one is a version of
the map ι of Lemma 2.9 applied to pair of primes ((0) ⊆ In) and evaluated on the p-completion
of BP . In this situation, Devinatz proves that ι is not a split injection whenever n ≥ 2, i.e., as
soon as the pair of primes ((0) ⊆ In) is not consecutive.

This highlights the subtlety of the algebraic chromatic splitting hypothesis.

We now provide a motivating example for studying the algebraic chromatic splitting hypothesis
for ring spectra.

Example 3.17. Let C∗(BG, k) ≃ khG be the E∞-ring of cochains on the classifying space of a
compact Lie group G with π0G a finite p-group and with coefficients in a field k. Benson and
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Greenlees [BG14], extending earlier work of Benson, Iyengar, and Krause [BIK11b], prove that
ModC∗(BG,k) is stratified by the canonical action of π−∗C

∗(BG, k) ∼= H∗(G, k). Assume further
that G is finite. Since H∗(G, k) is Noetherian by a theorem due to Evens [Eve61] and Venkov
[Ven59], and C∗(BG, k)q is absolute Gorenstein for any q ∈ Spech(H∗(G, k)) by work of Benson
and Greenlees, see [BHV18, Prop. 4.33], Corollary 3.14 applies to give a natural splitting of the
map

Λ̃p′kp // Λ̃p′Λpkp

for any adjacent pair of primes p′, p ∈ Spech(H∗(G, k)). Note that, for G a finite group, the local
homology Λpk is in some sense dual to the Rickard idempotents, see [BIK08, Sec. 10].

Using the techniques of [BHV18] and [BK08], the chromatic splitting can be transported to
the stable module category StModkG for any finite p-group G. Therefore, we obtain a qualitative
description of how the stable module module category is locally built up from its indecomposable
layers, at least for compact objects.

Finally, we conclude with an example which illustrates our results in the case of an explicit
Noetherian E∞-ring spectrum.

Example 3.18. Let G = Z/2×Z/2 = 〈g1, g2〉 be the Klein group and k an algebraically closed
field of characteristic 2. The E∞-ring spectrum C∗(BG, k) of cochains on G with coefficients in
k has homotopy groups

π−∗C
∗(BG, k) ∼= H∗(G, k) ∼= k[ζ1, ζ2]

with ζ1 and ζ2 generators in degree 1. Therefore, C∗(BG, k) is Noetherian and there is an
equivalence

ModC∗(BG,k) ≃ StablekG

as G is a 2-group, where StablekG is the slight enlargement of the stable module category
StModkG constructed by Benson and Krause [BK08]. We may therefore work within the stable
module category StModkG; in particular, all our constructions can be restricted to this subcat-
egory of StablekG. Consider the prime ideal p = (ζ1) generated by ζ1 and the consecutive pair
of primes ((0) ⊆ (ζ1)) in Spech(H∗(G, k)). Any compact M ∈ StablekG is of type 0 so we may
take M = k. By (5) and [BIK12, Sec. 4.3.2], we obtain equivalences

LV(ζ1)kζ1 ≃ LZ(0)k ≃ k(t)⊕ k(t),

where kζ1 = LZ(ζ1)k has cohomology H∗(G, kζ1)
∼= k[ζ1, ζ2](ζ1) and the two generators of G act

via the matrices

g1 7→

(
Id 0

Id Id

)
g2 7→

(
Id 0

t Id

)
.

The fracture square of Lemma 2.9 then takes the following form:

kζ1

��

// Λζ1kζ1

��

k(t)⊕ k(t) ιζ1
// LV(ζ1)Λζ1kζ1 .

We do not know of an elementary description of the objects in the right column of this square, but
our main theorem Theorem 3.11 implies that ιζ1 is a split injection. This provides a construction
of kζ1 from the three remaining pieces with smaller support.
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categories. Ann. Sci. Éc. Norm. Supér. (4), 41(4):573–619, 2008. (cit on pp. 1, 3, 4, 5, 6, 11, 14).
[BIK11a] Dave Benson, Srikanth B. Iyengar, and Henning Krause. Stratifying triangulated categories. J. Topol.,

4(3):641–666, 2011. (cit on pp. 1, 5, 8, 13).
[BIK11b] David J. Benson, Srikanth B. Iyengar, and Henning Krause. Stratifying modular representations of

finite groups. Ann. of Math. (2), 174(3):1643–1684, 2011. (cit on pp. 2, 14).
[BIK12] David J. Benson, Srikanth Iyengar, and Henning Krause. Representations of finite groups: local coho-

mology and support, volume 43 of Oberwolfach Seminars. Birkhäuser/Springer Basel AG, Basel, 2012.
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